Freight Operations study
I-64 WB MM 105 – 99

Matthew Shiley, PE
Regional Operations Director
March 30, 2017
Operations Problem

➢ I-64 Westbound
 ▪ From MM 105 to MM 99
 ▪ Weekday evening Peak hours

➢ Speed Differentials
 ▪ Steep grades
 ▪ Mix of passenger vehicles and freight traffic

➢ Lane Utilization
 ▪ Driver behavior (lane changing, braking, small gaps)
 ▪ Existing law for trucks & comb. vehicles traveling below posted speed limit

➢ Congestion
 ▪ Reduced speeds
 ▪ Reduced travel time
Approach

- Operational Analysis (2015-16)
 - Crashes
 - Grades
 - Traffic volume and mix
 - Speeds
 - Lane utilization
 - Truck climbing lane warrants evaluation (AASHTO)

- VISSIM Model (2016)
 - Model exiting traffic conditions
 - Evaluate potential solutions
Findings

➢ **Average Daily Traffic (ADT):** 18,700 vehicles (14% Trucks)

➢ **PM Peak Hour:** 5-6 PM (M-F)
 1,840 vehicles (9% Trucks)

➢ **Posted Speed Limit:** 65 MPH

➢ **85th percentile speed:** +71 MPH

➢ **MM105.5 to 100.2**
 ▪ Overall travel speeds decrease as vehicles travel uphill

➢ **MM104 (5-6PM)**
 ▪ 73% (1,350) of vehicles are using the inside/left lane

➢ **MM 100.2**
 ▪ 21% of vehicles traveling in the right/outer lane are traveling at speeds lower than 50 MPH
Findings

➢ Consistent Pattern observed from data:
 ➢ Non-Peak period—Truck Volume in left lane is lower than the truck volume in right lane
 ➢ Peak Period (4:00-6:00 pm)---Truck volume in Left Lane exceeds the Right Lane truck volume

➢ Field Observations during PM peak period: Trucks that move to the left lane generally do so to overtake slow moving Trucks in the right lane
Speed Comparison

I-64 Speeds at Mile Marker 105.5

<table>
<thead>
<tr>
<th>Speed Range</th>
<th>Inside Lane</th>
<th>Outside Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15-20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25-30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30-35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35-40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40-45</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>45-50</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>50-55</td>
<td>30</td>
<td>91</td>
</tr>
<tr>
<td>55-60</td>
<td>91</td>
<td>322</td>
</tr>
<tr>
<td>60-65</td>
<td>255</td>
<td>702</td>
</tr>
<tr>
<td>65-70</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>>70</td>
<td>124</td>
<td>124</td>
</tr>
</tbody>
</table>

I-64 Speeds at Mile Marker 100.2

<table>
<thead>
<tr>
<th>Speed Range</th>
<th>Inside Lane</th>
<th>Outside Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td><15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15-20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20-25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25-30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30-35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35-40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40-45</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>45-50</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>50-55</td>
<td>29</td>
<td>80</td>
</tr>
<tr>
<td>55-60</td>
<td>80</td>
<td>121</td>
</tr>
<tr>
<td>60-65</td>
<td>121</td>
<td>144</td>
</tr>
<tr>
<td>65-70</td>
<td>144</td>
<td>216</td>
</tr>
<tr>
<td>>70</td>
<td>216</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>348</td>
<td>207</td>
</tr>
</tbody>
</table>
5-Year Crash Analysis

- I-64 WB - MM 104 – 99
 - 76 total crashes from 2010 – 2014
 - 52.05 crashes per 100 Million VMT
 +2.64% from Culpepper District Average
 +20.28% from Staunton District Average
 - No Fatal crashes
 - 41% (31) Rear-End crashes (highest type)
 - (7) Non-rear end; attributed to speed differentials

- 50% of all crashes Rear-end or speed related
AASHTO Climbing Lane for Multi-Lane Highways

If ONE of the following principles is satisfied, *consideration* of a truck climbing lane IS WARRANTED:

Critical Length of Grade: Length of grade exceeds the critical length of grade.
- ✓ **Segment meets criteria**

Service Flow Volume: Service flow volume is greater than 1,000 vehicles per hour per lane (vphpl) but less than 1,700 vphpl.
- ✓ **Segment meets criteria**

Operational Assessment (Level of Service): Existing level of service exceeds LOS D and would be improved one grade level with the addition of a truck climbing lane.
- X **Segment does not meet criteria**
Traffic Model Findings

➢ 100% Truck Restriction on Left Lane was modeled

➢ Left Lane impacts: In the higher grades, average speed goes up in the left lane, compared to existing conditions; Speed difference is significant (5% increase), although less volume is processed.

➢ Right Lane impacts: Speed difference is minimal over existing and more volume is processed

➢ Average speed (Trucks & Cars combined) slows down around 3:00 PM and starts increasing around 7:00 PM
Potential Solutions and challenges

▪ Interim Solutions: Upgrade existing signs and use Changeable Message Signs (CMS) to alert trucks to use the right lane

▪ Monitor & Evaluate effectiveness

Static Signing: Completed 2016

CMS signs activated 3/23/17 (M-F; 3-7:00 PM)

• CMS sign message at MM 102 & 104

• CMS sign at MM 110 displays travel time to I-81/Staunton
Potential Solutions and challenges

➢ Temporary Solution - FHWA Hard Shoulder Running
 ▪ Approval must be obtained from FHWA for Hard Shoulder Running
 ▪ Providing Refuge/Pull-offs for breakdowns needed
 ▪ The intent is for these facilities to be temporary in nature and not a permanent solution for long-term capacity provision
 ▪ Requires an ITS system to operate dynamically

➢ Construction of a westbound truck climbing lane.

➢ Funding
QUESTIONS?